Down-regulation of c-FLIP Enhances death of cancer cells by smac mimetic compound.
نویسندگان
چکیده
Smac mimetic compounds (SMC) are novel small molecules being developed for cancer therapy. The mechanism of SMC-induced sensitivity in cancer cells depends on autocrine release of tumor necrosis factor alpha (TNFalpha); however, potential mechanisms of resistance remain unknown. Here, we investigated the molecular profile and cytotoxic responsiveness of a diverse panel of 51 cancer cell lines to combinations of a dimeric SMC (AEG40730), death ligand TNFalpha, and tumor necrosis factor-related apoptosis-inducing ligand. Synergy was seen in combination with death receptor agonists in some cells, although single-agent activity was limited to a fewsensitive lines. Unexpectedly, the majority of cell lines resistant to combinations of SMC-AEG40730 and death ligands expressed caspase-8, FADD, RIP1, and ligand receptors necessary for apoptosis execution. Furthermore, TNFalpha-mediated ubiquitination of RIP1 was repressed by SMC-AEG40730 treatment, leading to the formation of the proapoptosis complex II. However, in resistant cancer cells, SMC-AEG40730 repressed TNFalpha-mediated c-jun-NH(2)-kinase activation and the levels of caspase-8 inhibitor c-FLIP were persistently elevated, in contrast to SMC-responsive cancer cells. Importantly, the silencing of c-FLIP restored SMC sensitivity in previously resistant cancer cells by allowing ligand-mediated activation of caspase-8 and caspase-3 to proceed. Together, these results provide mechanistic insight into the action of SMCs, demonstrating that the deciphering of the relevant molecular signature in cancer cells leads to the prediction of cancer cell responsiveness to SMC treatment. Furthermore, a majority of resistant cancer cells were sensitized to SMC-AEG40730 and TNFalpha by down-regulating c-FLIP, suggesting novel approaches in the use of SMCs and c-FLIP antagonists in treating cancer.
منابع مشابه
NCTD promotes Birinapant-mediated anticancer activity in breast cancer cells by downregulation of c-FLIP
Second mitochondria-derived activator of caspases (SMAC) mimetics is a class of new anticancer agents. However, most cancers exhibit de novo or acquired resistance to SMAC mimetics, posting a problem for broad applications in clinic, and highlighting the necessity of exploring combinational strategies to circumvent SMAC mimetic-resistance. We here showed that Norcantharidin, a drug that is curr...
متن کاملTNF-α Induces Two Distinct Caspase-8 Activation Pathways
The inflammatory response of mammalian cells to TNF-alpha can be switched to apoptosis either by cotreatment with a protein synthesis inhibitor, cycloheximide, or Smac mimetic, a small molecule mimic of Smac/Diablo protein. Cycloheximide promotes caspase-8 activation by eliminating endogenous caspase-8 inhibitor, c-FLIP, while Smac mimetic does so by triggering autodegradation of cIAP1 and cIAP...
متن کاملHyperosmotic stress enhances cytotoxicity of SMAC mimetics
Inhibitors of apoptosis (IAP) proteins contribute to cell death resistance in malignancies and emerged as promising targets in cancer therapy. Currently, small molecules mimicking the IAP-antagonizing activity of endogenous second mitochondria-derived activator of caspases (SMAC) are evaluated in phase 1/2 clinical trials. In cancer cells, SMAC mimetic (SM)-mediated IAP depletion induces tumor ...
متن کاملOvercoming cancer cell resistance to Smac mimetic induced apoptosis by modulating cIAP-2 expression.
Smac mimetics target cancer cells in a TNFalpha-dependent manner, partly via proteasome degradation of cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2. Degradation of cIAPs triggers the release of receptor interacting protein kinase (RIPK1) from TNF receptor I (TNFR1) to form a caspase-8 activating complex together with the adaptor protein Fas-associated death domain (FADD). We report here ...
متن کاملSmall Molecule Therapeutics Birinapant (TL32711), a Bivalent SMAC Mimetic, Targets TRAF2-Associated cIAPs, Abrogates TNF-Induced NF-kB Activation, and Is Active in Patient-Derived Xenograft Models
The acquisition of apoptosis resistance is a fundamental event in cancer development. Among the mechanisms used by cancer cells to evade apoptosis is the dysregulation of inhibitor of apoptosis (IAP) proteins. The activity of the IAPs is regulated by endogenous IAP antagonists such as SMAC (also termed DIABLO). Antagonism of IAP proteins by SMAC occurs via binding of the N-terminal tetrapeptide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 69 19 شماره
صفحات -
تاریخ انتشار 2009